Stirling数相关论文
Bernoulli数、Stirling数、Euler数在组合数学、函数论、理论物理及近似计算等方面均有广泛的应用。在数字图像中,可以利用欧拉数来......
连续整数幂和定义为即前n个正整数的m次幂的和.我们知道,下标为奇数的连续整数幂和S2m-1(n)可以由S1(n)的多项式表示,并且其系数与......
Legendre-Stirling数是在Everitt探究经典二阶勒让德微分表达式的谱理论时提出来的,而且Legendre-Stirling数是拉格朗日对称式中勒......
本文试图在经典组合序列与矩阵技术之间的联系上做些工作.具体内容如下:1.研究了二项式系数(α-k n-k)、α/αβn(α+βn n)、(n+......
Stirling数的概念是由J.Stirling于1730年在他的著作《Methodus Differentialis》中首次提出.此后,许多学者对这方面做了大量的研......
本文主要利用发生函数方法及Riordan阵理论,研究了一类推广的广义λ-array type多项式,给出了广义λ-array type多项式与广义Hermite......
Stirling数和Bernoulli数在分析、组合数学、数论及近似计算等方面均有广泛应用。一直以来是人们感兴趣的研究课题,Bernoulli数是1......
本论文首先概述了近年来记录值的研究情况,通过研究记录时间的分布,得到了记录时间的发生函数。由于记录值、记录时间的研究大多都与......
Bernoulli多项式、高阶Bernoulli多项式、Euler多项式和高阶Euler多项式在解析数论和函数论中有着广泛的应用.Akiyama—Tanigawa算......
在Bernoulli数与第二类Stirling数关系的基础上,获得包含Bernoulli多项式Bn(x)、第二类Stirling数的恒等式.......
本文首先对Shapiro的Riordan群进行了推广,给出了Hsu-Riordan partialmonoid的概念,然后在此框架内,对徐利治先生的两类扩展型广义......
u1,u2,…是独立、同分布于(0,1)区间上均匀分布的随机变量.本文证明了1-u1u2…uk的n-1阶矩(n≥1)是以调和数的部分和ξn(r)=∑ni=1......
给出了Faà di bruno公式在函数逐次求导上的应用定理并给出了证明,同时应用此定理给出了一些抽象复合函数的逐次导数,并利用Stirl......
本文从组合意义角度对两类普通stirling数进行了推广.借助发生函数的方法给出了推广后的两类stirling数满足的基本递推关系以及各......
给出了Cauchy多项式cαn(z)的定义,并导出它的生成函数.再利用Riordan 阵方法得到包含Cauchy多项式的一些恒等式,获得它与广义调和......
本文研究了抽球概率模型的问题.利用概率方法,获得了关于第一类Stirling数和广义可重复二项式系数的无限求和形式的组合恒等式以及......
借助Stirling数研究了高阶Lagrange微分中值定理在f(n+1)(a)=0或f(n+1)(a)不存在时的“中值点”的渐近性,并给出了渐近性估计式.......

